Monday, 19 September 2016

Shining light on the 3D structures of membrane proteins

A symposium was held at Birkbeck on August 10, 2016 to honour one of the college’s most distinguished structural biologists, Professor Bonnie Wallace. This was organised by a postdoctoral member of her group, Lee Whitmore, and her long-term colleague and collaborator Dr Bob Janes from Queen Mary, University of London to celebrate her 65th birthday. It featured speakers from five continents, all of whom had collaborated with her or worked in her lab at some point in their careers.

Wallace joined what was then the Department of Crystallography at Birkbeck in 1990 after holding several research positions in her native USA. Her research on the structure and function of membrane proteins has won her several prestigious awards, including the Biochemical Society’s triennial AstraZeneca award in 2010. This is given for outstanding research in a UK or Irish laboratory that leads to the development of a new method or reagent. She has made significant contributions to both the development of circular dichroism spectroscopy as a tool for investigating the structures of proteins (including membrane proteins) at less than atomic resolution, and to studies of membrane protein structures using crystallography and electron microscopy. Her studies of voltage-gated sodium channel structures have led to some important insights about their functions in health and disease.

The symposium was divided into three sessions, with the first devoted to circular dichroism spectroscopy and the second two to membrane proteins. A general report of the day has been published on the Biological Sciences website; here, to fit in with the remit of the PPS course, I concentrate on the sections on membrane proteins.

The first talk was on electron microscopy, given, appropriately enough, by one of the pioneers of the field: Richard Henderson from the MRC Laboratory of Molecular Biology in Cambridge. Throughout most of the 1970s and 1980s he and his collaborator, Nigel Unwin, worked on the development of electron microscopy techniques for the study of protein structures. Most of their work involved the proton pump, bacteriorhodopsin, which is found in very high concentrations in the purple membranes of Halobacteria. At the beginning, this work was very time-consuming: it took them a year to locate the C-terminus of the protein, and another to determine the binding site of its ligand, retinal.

The first near atomic resolution structures of this protein were obtained in the mid-1990s. At about that time, too, he switched the focus of his interest from the structures of ‘2D crystals’ of bacteriorhodopsin to those of ‘blob-like’ single particles: isolated protein chains or, more often, membrane-embedded protein complexes. The list of biologically and medically important complexes to have been solved using this technique is now growing rapidly, and includes rotary ATP synthase (see the previous post on this blog); the next complex in the electron transport chain, known as respiratory complex I; and gamma secretase, which is a potential drug target for Alzheimer’s disease.

Molecular simulation and modelling techniques have developed alongside those of structural biology and for almost as long. Mark Sansom, a professor of structural bioinformatics at the University of Oxford, described simulations of membrane proteins. He started his talk describing a program to visualise and analyse the pores through the centres of membrane proteins that was written by Oliver Smart (now at the EBI) when he was a postdoc in Wallace’s group. This program, HOLE, is relatively simple but is still widely used. Sansom’s current work uses molecular dynamics to model the membrane bilayer with numbers of embedded proteins, focusing particularly on interactions between those proteins and the lipids of the membrane.

Not surprisingly, there were several talks about the ion channels that have been a focus of so much of Wallace’s more recent research: voltage-gated sodium channels. Hugh Hemmings from Weill Cornell Medicine, New York, USA described how these channels have become useful targets for anaesthetic drugs. General anaesthesia is a drug-induced coma characterised by unconsciousness, immobility and amnesia; an effective anaesthetic will achieve all these and a wide variety of molecules have been employed to greater or lesser effect since the nineteenth century. Many of these target proteins involved in the release of neurotransmitters by pre-synaptic nerves, including ion channels; sodium channels were first proposed as anaesthetic targets in the late 1970s but fell out of favour for several decades. Interest in this mechanism of anaesthesia has revived with the use of the bacterial proteins – a focus of Wallace’s structural studies – as a model system. Hemmings’ current studies focus on the mechanism through which volatile anaesthetics such as isoflurane inhibit the passage of sodium ions through these channels.

Crystal structure of the NavMs voltage-gated sodium channel pore depicted in ribbon motif and viewed from the membrane normal direction. each of the four monomers in the tetrameric structure is depicted in a different colour (from Naylor et al., 2016 - Wallace lab paper). The transmembrane sodium pathway run through the middle of the structure, from top to bottom.

Lin Field of Rothamsted Research, Harpenden, UK, described research leading to a very different application of sodium channel blockers: as insecticides. Insects cause an immense amount of crop damage worldwide, but non-specific insecticides might be toxic either to humans or to beneficial insects such as bees. The mechanism of the pyrethroid class of insecticides was unknown when the first members of this class were patented, but they are now known to bind to voltage-gated sodium channels and prevent their closure. Structural studies of these proteins have shown how mutations that are known to lead to pyrethroid resistance can prevent the molecules from binding, and why these compounds have very little effect on the very similar mammalian channels. Researchers hope that these studies are taking us nearer to the development of ideal, ‘designer insecticides’ that are only harmful to pest species.

Further talks were given by Wallace’s first Ph.D. student at Birkbeck, Declan Doyle, who is now at the University of Southampton; by Per Bullough from the University of Sheffield; and by Dame Carol Robinson, the first woman to be appointed as a full professor of chemistry at the University of Oxford. The symposium ended with a summary and vote of thanks from Janes, who stressed that it did not mark Wallace’s retirement: she still loves science and has many questions to answer. I hope that I will be blogging innovative research from the Wallace lab for many years to come.


Wallace’s research has been described in this blog on several previous occasions – see in particular this post from April 2013 and this one from November 2010. The use of cryo-electron microscopy to determine atomic resolution structures of proteins is covered in depth in our Techniques in Structural Molecular Biology course, which is one of the options for the second year of the Structural Molecular biology MSc.

No comments: